RLSNAKE: A HYBRID REINFORCEMENT LEARNING APPROACH FOR ROAD DETECTION
نویسندگان
چکیده
منابع مشابه
Intrusion Detection based on a Novel Hybrid Learning Approach
Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...
متن کاملRecurrent Reinforcement Learning: A Hybrid Approach
Successful applications of reinforcement learning in real-world problems often require dealing with partially observable states. It is in general very challenging to construct and infer hidden states as they often depend on the agent’s entire interaction history and may require substantial domain knowledge. In this work, we investigate a deep-learning approach to learning the representation of ...
متن کاملHierarchical Reinforcement Learning: A Hybrid Approach
In this thesis we investigate the relationships between the symbolic and subsymbolic methods used for controlling agents by artificial intelligence, focusing in particular on methods that learn. In light of the strengths and weaknesses of each approach, we propose a hybridisation of symbolic and subsymbolic methods to capitalise on the best features of each. We implement such a hybrid system, c...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملA Hybrid Multiagent Reinforcement Learning Approach Using Strategies and Fusion
Reinforcement Learning comprises an attractive solution to the problem of coordinating a group of agents in a Multiagent System, due to its robustness for learning in uncertain and unknown environments. This paper proposes a multiagent Reinforcement Learning approach, that uses coordinated actions, which we call strategies and a fusing process to guide the agents. To evaluate the proposed appro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
سال: 2021
ISSN: 2194-9034
DOI: 10.5194/isprs-archives-xliii-b3-2021-39-2021